MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

When all information is not created equal

Author(s)
Borade, Shashibhushan Prataprao, 1981-
Thumbnail
DownloadFull printable version (16.80Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Lizhong Zheng.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Following Shannon's landmark paper, the classical theoretical framework for communication is based on a simplifying assumption that all information is equally important, thus aiming to provide a uniform protection to all information. However, this homogeneous view of information is not suitable for a variety of modern-day communication scenarios such as wireless and sensor networks, video transmission, interactive systems, and control applications. For example, an emergency alarm from a sensor network needs more protection than other transmitted information. Similarly, the coarse resolution of an image needs better protection than its finer details. For such heterogeneous information, if providing a uniformly high protection level to all parts of the information is infeasible, it is desirable to provide different protection levels based on the importance of those parts. The main objective of this thesis is to extend classical information theory to address this heterogeneous nature of information. Many theoretical tools needed for this are fundamentally different from the conventional homogeneous setting. One key issue is that bits are no more a sufficient measure of information. We develop a general framework for understanding the fundamental limits of transmitting such information, calculate such fundamental limits, and provide optimal architectures for achieving these limits. Our analysis shows that even without sacrificing the data-rate from channel capacity, some crucial parts of information can be protected with exponential reliability. This research would challenge the notion that a set of homogenous bits should necessarily be viewed as a universal interface to the physical layer; this potentially impacts the design of network architectures. This thesis also develops two novel approaches for simplifying such difficult problems in information theory. Our formulations are based on ideas from graphical models and Euclidean geometry and provide canonical examples for network information theory. They provide fresh insights into previously intractable problems as well as generalize previous related results.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 191-196).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/45883
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.
  • Electrical Engineering and Computer Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.