Show simple item record

dc.contributor.advisorLizhong Zheng.en_US
dc.contributor.authorBorade, Shashibhushan Prataprao, 1981-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2009-06-30T16:32:02Z
dc.date.available2009-06-30T16:32:02Z
dc.date.copyright2008en_US
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/45883
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.en_US
dc.descriptionIncludes bibliographical references (p. 191-196).en_US
dc.description.abstractFollowing Shannon's landmark paper, the classical theoretical framework for communication is based on a simplifying assumption that all information is equally important, thus aiming to provide a uniform protection to all information. However, this homogeneous view of information is not suitable for a variety of modern-day communication scenarios such as wireless and sensor networks, video transmission, interactive systems, and control applications. For example, an emergency alarm from a sensor network needs more protection than other transmitted information. Similarly, the coarse resolution of an image needs better protection than its finer details. For such heterogeneous information, if providing a uniformly high protection level to all parts of the information is infeasible, it is desirable to provide different protection levels based on the importance of those parts. The main objective of this thesis is to extend classical information theory to address this heterogeneous nature of information. Many theoretical tools needed for this are fundamentally different from the conventional homogeneous setting. One key issue is that bits are no more a sufficient measure of information. We develop a general framework for understanding the fundamental limits of transmitting such information, calculate such fundamental limits, and provide optimal architectures for achieving these limits. Our analysis shows that even without sacrificing the data-rate from channel capacity, some crucial parts of information can be protected with exponential reliability. This research would challenge the notion that a set of homogenous bits should necessarily be viewed as a universal interface to the physical layer; this potentially impacts the design of network architectures. This thesis also develops two novel approaches for simplifying such difficult problems in information theory. Our formulations are based on ideas from graphical models and Euclidean geometry and provide canonical examples for network information theory. They provide fresh insights into previously intractable problems as well as generalize previous related results.en_US
dc.description.statementofresponsibilityby Shashibhushan Prataprao Borade.en_US
dc.format.extent196 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleWhen all information is not created equalen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc320241133en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record