MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Choosing a gate dielectric for graphene based transistors

Author(s)
Hsu, Pei-Lan, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (2.116Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jing Kong and Jakub Kedzierski.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Much attention has recently been focused on graphene as an alternative semiconductor to silicon. Transistors with graphene conduction channels have only recently been fabricated and their performance remains to be optimized. In this thesis, different candidate gate dielectric materials are examined for use in graphene transistors. Evaporated HfO2 is ultimately used as the gate dielectric for graphene field effect transistors (FETs) on six different graphene samples. Two types of graphene were used: graphene made from the sublimation of SiC and epitaxial graphene synthesized by chemical vapor deposition (CVD) onto nickel. Electrical performance of the graphene transistors were found to vary significantly depending on the local graphene microstructure. The gate dielectric was found to crack on thick regions of graphene but stay intact on thin regions. Dielectric charging resulted in hysteretic effects in device performance. As consistent with HfO2 used in silicon CMOS devices, electron mobilities were lower than hole mobilities in the fabricated graphene FETs.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
 
Includes bibliographical references (p. 91-97).
 
Date issued
2008
URI
http://hdl.handle.net/1721.1/46130
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.