MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Oxygen reduction on platinum : an EIS study

Author(s)
Golfinopoulos, Theodore
Thumbnail
DownloadFull printable version (2.377Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Yang Shao-Horn.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The oxygen reduction reaction (ORR) on platinum over yttria-stabilized zirconia (YSZ) is examined via electrochemical impedance spectroscopy (EIS) for oxygen partial pressures between 10-4 and 1 atm and at temperatures between 475 and 700°C. Use of photolithographic techniques in electrode fabrication renders a precise geometry of the Pt electrodes. Circular electrode design leads to cylindrical symmetry so that models may be applied exactly to the experimental geometry. Interpretation of EIS spectra is carried out by reducing and then extending existing models, and is consistent with the postulate that ORR is rate-limited jointly by two surface chemical processes, namely, sorption/dissociation of molecular O₂ into O[delta]- a over Pt, as well as surface diffusion. Further, the novel experimental design, in conjunction with streamlined analysis techniques, provides accurate surface characterization within the electrochemical environment and allows for a more transparent comparison to relevant literature data. An adsorption coverage isotherm is extracted, and the surface diffusion coefficient is obtained for a number of experimental conditions. Extracted diffusivities fell between 2 x 10-2 and 2 x 10-7 cm2/s, in agreement with literature values for the indicated temperature range.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Vita.
 
Includes bibliographical references (p. 197-200).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/46379
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.