MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Nuclear Engineering
  • Nuclear Engineering - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Nuclear Engineering
  • Nuclear Engineering - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The design of an intense accelerator-based epithermal neutron beam prototype for BNCT using near-threshold reactions

Author(s)
Lee, Charles L. (Charles Leon), 1970-
Thumbnail
DownloadFull printable version (9.706Mb)
Alternative title
Design of an intense accelerator-based epithermal neutron beam prototype for boron neutron capture therapy using near-threshold reactions
Advisor
Xiao-Lin Zhou.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Near-threshold boron neutron capture therapy (BNCT) uses proton energies only tens of keV above the (p,n) reaction threshold in lithium in order to reduce the moderation requirements of the neutron source. The goals of this research were to prove the feasibility of this near-threshold concept for BNCT applications, using both calculation and experiment, and design a compact neutron source prototype from these results. This required a multidisciplinary development of methods for calculation of neutron yields, head phantom dosimetry, and accelerator target heat removal. First, a method was developed to accurately calculate thick target neutron yields for both near-threshold and higher energy proton beams, in lithium metal as well as lithium compounds. After these yields were experimentally verified, they were used as neutron sources for Monte Carlo (MCNP) simulations of neutron and photon transport in head phantoms. The theoretical and experimental determination of heat removal from a target backing with multiple fins, as well as numerical calculations of heat deposition profiles based on proton energy loss in target and backing materials, demonstrated that lithium integrity can be maintained for proton beam currents up to 2.5 mA. The final design uses a proton beam energy of 1.95 MeV and has a centerline epithermal neutron flux of 2.2 x 108 n/cm2-sec/mA, an advantage depth of 5.7 cm, an advantage ratio of 4.3, and an advantage depth dose rate of 6.7 RBE-cGy/min/mA, corresponding to an irradiation time of 38 minutes with a 5 mA beam. Moderator, reflector, and shielding weigh substantially less than other accelerator BNCT designs based on higher proton energies, e.g. 2.5 MeV. The near-threshold concept is useful as a portable neutron source for hospital settings, with applications ranging from glioblastomas to melanomas and synovectomy.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1998.
 
Includes bibliographical references (p. 209-219).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/50535
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Engineering

Collections
  • Nuclear Engineering - Ph.D. / Sc.D.
  • Nuclear Engineering - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.