MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The relationship between iron and nitrogen fixation in Trichodesmium spp.

Author(s)
Chappell, Phoebe Dreux
Thumbnail
DownloadFull printable version (21.41Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
James W. Moffett, John B. Waterbury and Eric A. Webb.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Trichodesmium spp. are considered the dominant nitrogen (N) fixing cyanobacteria in tropical and subtropical oceans, regimes frequently characterized by low iron (Fe). Limited information exists about what levels of Fe limit Trichodesmium N fixation. I developed a diagnostic for Fe limitation using quantitative reverse transcription PCR (qRT-PCR) of the Fe stress response gene isiB, which encodes for flavodoxin a non-Fe containing substitute for ferredoxin. I determined that high isiB gene expression corresponded to cell-specific reductions in N fixation rates in both phylogenetic clades of Trichodesmium grown on varying levels of Fe. Using these laboratory-determined thresholds, I assessed Fe limitation of Trichodesmium from the Sargasso Sea, equatorial Atlantic Ocean and Western Pacific Warm Pool in conjunction with other analytical measurements (N, phosphorus (P) and dissolved Fe (<0.4[mu]m filtered)). I found widespread Fe limitation in Trichodesmium from the Pacific Ocean and minimal expression in the North Atlantic Ocean. I also found an inverse correlation between isiB expression and dissolved Fe:P ratios in seawater and data suggesting that most dissolved Fe in seawater, including organic ligand-bound Fe, is available to Trichodesmium. These data support and refine previous model predictions and demonstrate, in situ, the importance of Fe to the marine N cycle.
Description
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009.
 
Includes bibliographical references.
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/53103
Department
Joint Program in Oceanography/Applied Ocean Science and Engineering; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
/Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.