Show simple item record

dc.contributor.advisorJames W. Moffett, John B. Waterbury and Eric A. Webb.en_US
dc.contributor.authorChappell, Phoebe Dreuxen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2010-03-25T15:01:24Z
dc.date.available2010-03-25T15:01:24Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/53103
dc.descriptionThesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractTrichodesmium spp. are considered the dominant nitrogen (N) fixing cyanobacteria in tropical and subtropical oceans, regimes frequently characterized by low iron (Fe). Limited information exists about what levels of Fe limit Trichodesmium N fixation. I developed a diagnostic for Fe limitation using quantitative reverse transcription PCR (qRT-PCR) of the Fe stress response gene isiB, which encodes for flavodoxin a non-Fe containing substitute for ferredoxin. I determined that high isiB gene expression corresponded to cell-specific reductions in N fixation rates in both phylogenetic clades of Trichodesmium grown on varying levels of Fe. Using these laboratory-determined thresholds, I assessed Fe limitation of Trichodesmium from the Sargasso Sea, equatorial Atlantic Ocean and Western Pacific Warm Pool in conjunction with other analytical measurements (N, phosphorus (P) and dissolved Fe (<0.4[mu]m filtered)). I found widespread Fe limitation in Trichodesmium from the Pacific Ocean and minimal expression in the North Atlantic Ocean. I also found an inverse correlation between isiB expression and dissolved Fe:P ratios in seawater and data suggesting that most dissolved Fe in seawater, including organic ligand-bound Fe, is available to Trichodesmium. These data support and refine previous model predictions and demonstrate, in situ, the importance of Fe to the marine N cycle.en_US
dc.description.statementofresponsibilityby Phoebe Dreux Chappell.en_US
dc.format.extent130 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subject/Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshCyanobacteriaen_US
dc.subject.lcshMarine productivityen_US
dc.titleThe relationship between iron and nitrogen fixation in Trichodesmium spp.en_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc502997497en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record