MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diapycnal mixing transience and the meridional overturning circulation

Author(s)
Boos, William R. (William Ronald), 1975-
Thumbnail
DownloadFull printable version (9.907Mb)
Alternative title
Diapycnal mixing transience and the MOC
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
Kerry Emanuel.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Diapycnal mixing of ocean waters is crucial to the dynamics and associated heat transport of the meridional overturning circulation, yet uncertainty exists regarding the distribution and physical mechanisms of this mixing. This study uses a highly-idealized, single-hemisphere model of buoyancy-forced flow to examine the examine the effects of the transience of diapycnal mixing on the MOC. The strength of the MOC was found to be insensitive to mixing transience when mixing occurred uniformly on basin boundaries. For mixing that was highly localized in space, a ten-fold increase in transience, as compared with the time-invariant control, resulted in a decrease by about 20% of MOC mass and heat transport. The degree of sensitivity in the highly localized case is likely to be a strong function of the surface restoring timescale for temperature. The circulation dynamics associated with transient mixing displayed large-scale, complex oscillations that increased in amplitude with the transience of mixing. Attempts to quantify the relationship between mixing transience, MOC strength, and the power expended in mixing were inconclusive and merit further investigation.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2002.
 
Includes bibliographical references (leaves 27-28).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/53161
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.