MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calibration, feature extraction and classification of water contaminants using a differential mobility spectrometer

Author(s)
Ren, Bobby (Bobby B.)
Thumbnail
DownloadFull printable version (34.67Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Nirmal Keshava and Dennis Freeman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is a chemical sensor that separates ions in the gaseous phase based on their mobility in high electric fields. A threefold approach was developed for both chemical type classification and concentration classification of water contaminants for FAIMS signals. The three steps in this approach are calibration, feature extraction, and classification. Calibration was carried out to remove baseline fluctation and other variations in FAIMS data sets. Four feature extraction algorithms were used to extract subsets of the signal that had high separation potential between two classes of signals. Finally, support vector machines were used for binary classification. The success of classification was measured both by using separability metrics to evaluate the separability of extracted features, and by the percent of correct classification (Pcc) in each task.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
 
Includes bibliographical references (p. 87-89).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/53163
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.