MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermodynamic modeling of solder melting and solidification for proposed squishbot design

Author(s)
Utz, Robert (Robert C.)
Thumbnail
DownloadFull printable version (7.947Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Martin Culpepper.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis develops a thermodynamic simulation of the melting and solidification of a substance resting on a surface. The simulation was created in an effort to develop a single actuator joint locking and unlocking mechanism for Squishbot. The Squishbot is a proposed robot that has the ability to climb walls and change shape in order to gain entry into normally inaccessible areas. By using COMSOL Multiphysics, a simple model was developed and tested. Under these conditions, the solder melting phase transition took 2.25 seconds to melt and 2.65 seconds to solidify. These results, as well as observations about the behavior of the program's numerical solver, seem to suggest that the proposed joint locking system is feasible. A framework is laid out to proceed with improved and more specific models for use as an optimization tool.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 52).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/54485
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.