MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Production and inventory control of a multi-item multi-stage manufacturing system : simulation modeling, capacitated shipment planning and Kanban design

Author(s)
Rizvi, Syed Zia Abbas
Thumbnail
DownloadFull printable version (9.228Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Stanley B. Gershwin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The project work presented in this thesis has proposed solutions related to the control of production and work-in-process inventory in a multi-item multi-stage manufacturing system. A suitable base-stock inventory control policy is recommended to ensure that the desired service levels are maintained between production stages and for the final customers. Concept of coupling the production lines though coupling-stock under suitable assumptions is then introduced to reduce the stock levels at certain consecutive production stages. A framework for demand seasonality and characteristic analysis is also established to enable the inventory control policy to respond to seasonal variations. Monte Carlo simulation was performed on a model of chain of production stages controlled under base-stock policy for the verification of results and to study the effects of stock-outs on base-stock levels. The results of simulation study showed that overall system performance is satisfactory and desired service levels were achieved. Simulation work was also carried out to validate the line coupling concept and its performance under certain conditions. A novel Kanban based visual management system design, which is aligned with the requirements of inventory control policy, along with the material transfer batch sizes between production stages is proposed to facilitate the implementation of inventory control policy. Furthermore, capacitated shipment planning approach is proposed and implemented in form of a spreadsheet-based interface to aid planning personnel in shipment planning under the constraints provided by the inventory control policy.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 101).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/55232
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.