MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A gradient optimization approach to adaptive multi-robot control

Author(s)
Schwager, Mac
Thumbnail
DownloadFull printable version (20.13Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Daniela Rus.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis proposes a unified approach for controlling a group of robots to reach a goal configuration in a decentralized fashion. As a motivating example, robots are controlled to spread out over an environment to provide sensor coverage. This example gives rise to a cost function that is shown to be of a surprisingly general nature. By changing a single free parameter, the cost function captures a variety of different multi-robot objectives which were previously seen as unrelated. Stable, distributed controllers are generated by taking the gradient of this cost function. Two fundamental classes of multi-robot behaviors are delineated based on the convexity of the underlying cost function. Convex cost functions lead to consensus (all robots move to the same position), while any other behavior requires a nonconvex cost function. The multi-robot controllers are then augmented with a stable on-line learning mechanism to adapt to unknown features in the environment. In a sensor coverage application, this allows robots to learn where in the environment they are most needed, and to aggregate in those areas. The learning mechanism uses communication between neighboring robots to enable distributed learning over the multi-robot system in a provably convergent way. Three multi-robot controllers are then implemented on three different robot platforms. Firstly, a controller for deploying robots in an environment to provide sensor coverage is implemented on a group of 16 mobile robots.
 
(cont.) They learn to aggregate around a light source while covering the environment. Secondly, a controller is implemented for deploying a group of three flying robots with downward facing cameras to monitor an environment on the ground. Thirdly, the multi-robot model is used as a basis for modeling the behavior of a herd of cows using a system identification approach. The controllers in this thesis are distributed, theoretically proven, and implemented on multi-robot platforms.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 181-190).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/55256
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.