MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fabrication and characterization of conducting polymer microwires

Author(s)
Saez, Miguel Angel
Thumbnail
DownloadFull printable version (18.83Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Ian W. Hunter.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that integrate these functionalities over wide areas (i.e. the human body) requires the production of long, highly conductive, and mechanically robust fibers or microwires. This thesis describes the development of a microwire slicing instrument capable of producing conducting polymer wires with widths as small as a few micrometers and lengths ranging from tens of millimeters to meters. To ensure high conductivity and robustness, the wires are sliced from thin polypyrrole films electrodeposited onto a glassy carbon crucible. Extensive testing was conducted to determine the optimal cutting parameters for producing long, fine wires with cleanly cut edges. This versatile fabrication process has been used to produce free-standing microwires with cross-sections of 2 [micro]m x 3 [micro]m, 20 [micro]m x 20 [micro]m, and 100 [micro]m x 20 [micro]m with lengths of 15 mm, 460 mm, and 1,200 mm, respectively. An electrochemical dynamic mechanical analyzer was used to measure the static and dynamic tensile properties, the strain-resistance relationship, and the electrochemical actuation performance of the microwires. The measured gage factors ranged from 0.4 to 0.7 and are suitable for strain sensing applications. Strains and forces of up to 2.9% and 2.3 mN were recorded during electrochemical actuation in BMIMPF6 . These monofilament microwires may be spun into yarns or braided into 2- and 3- dimensional structures for use as actuators, sensors, micro antennas, and electrical interconnects in smart fabrics.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 91-94).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/55279
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.