Show simple item record

dc.contributor.advisorIan W. Hunter.en_US
dc.contributor.authorSaez, Miguel Angelen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2010-05-25T21:14:32Z
dc.date.available2010-05-25T21:14:32Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/55279
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 91-94).en_US
dc.description.abstractFlexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that integrate these functionalities over wide areas (i.e. the human body) requires the production of long, highly conductive, and mechanically robust fibers or microwires. This thesis describes the development of a microwire slicing instrument capable of producing conducting polymer wires with widths as small as a few micrometers and lengths ranging from tens of millimeters to meters. To ensure high conductivity and robustness, the wires are sliced from thin polypyrrole films electrodeposited onto a glassy carbon crucible. Extensive testing was conducted to determine the optimal cutting parameters for producing long, fine wires with cleanly cut edges. This versatile fabrication process has been used to produce free-standing microwires with cross-sections of 2 [micro]m x 3 [micro]m, 20 [micro]m x 20 [micro]m, and 100 [micro]m x 20 [micro]m with lengths of 15 mm, 460 mm, and 1,200 mm, respectively. An electrochemical dynamic mechanical analyzer was used to measure the static and dynamic tensile properties, the strain-resistance relationship, and the electrochemical actuation performance of the microwires. The measured gage factors ranged from 0.4 to 0.7 and are suitable for strain sensing applications. Strains and forces of up to 2.9% and 2.3 mN were recorded during electrochemical actuation in BMIMPF6 . These monofilament microwires may be spun into yarns or braided into 2- and 3- dimensional structures for use as actuators, sensors, micro antennas, and electrical interconnects in smart fabrics.en_US
dc.description.statementofresponsibilityby Miguel Angel Sáez.en_US
dc.format.extent94 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleFabrication and characterization of conducting polymer microwiresen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.identifier.oclc613333685en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record