MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computer vision based navigation for spacecraft proximity operations

Author(s)
Tweddle, Brent Edward
Thumbnail
DownloadFull printable version (25.69Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
David W. Miller and Alvar Saenz-Otero.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The use of computer vision for spacecraft relative navigation and proximity operations within an unknown environment is an enabling technology for a number of future commercial and scientific space missions. This thesis presents three first steps towards a larger research initiative to develop and mature these technologies. The first step that is presented is the design and development of a " flight-traceable" upgrade to the Synchronize Position Hold Engage Reorient Experimental Satellites, known as the SPHERES Goggles. This upgrade enables experimental research and maturation of computer vision based navigation technologies on the SPHERES satellites. The second step that is presented is the development of an algorithm for vision based relative spacecraft navigation that uses a fiducial marker with the minimum number of known point correspondences. An experimental evaluation of this algorithm is presented that determines an upper bound on the accuracy and precision of this system. The third step towards vision based relative navigation in an unknown environment is a preliminary investigation into the computational issues associated with high performance embedded computing. The computational characteristics of vision based relative navigation algorithms are discussed along with the requirements that they impose on computational hardware. A trade study is performed which compares a number of dierent commercially available hardware architectures to determine which would provide the best computational performance per unit of electrical power.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references (p. 219-226).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/57545
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.