MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Simplified Method for Deriving Equations of Motion For Continuous Systems with Flexible Members

Author(s)
Singer, Neil C.; Seering, Warren P.
Thumbnail
DownloadAIM-1423.ps.Z (684.4Kb)
Additional downloads
AIM-1423.pdf (403.8Kb)
Metadata
Show full item record
Abstract
A method is proposed for deriving dynamical equations for systems with both rigid and flexible components. During the derivation, each flexible component of the system is represented by a "surrogate element" which captures the response characteristics of that component and is easy to mathematically manipulate. The derivation proceeds essentially as if each surrogate element were a rigid body. Application of an extended form of Lagrange's equation yields a set of simultaneous differential equations which can then be transformed to be the exact, partial differential equations for the original flexible system. This method's use facilitates equation generation either by an analyst or through application of software-based symbolic manipulation.
Date issued
1993-05-01
URI
http://hdl.handle.net/1721.1/5951
Other identifiers
AIM-1423
Series/Report no.
AIM-1423

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.