MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Multi-Scale Veto Model: A Two-Stage Analog Network for Edge Detection and Image Reconstruction

Author(s)
Dron, Lisa
Thumbnail
DownloadAIM-1320.ps (2.584Mb)
Additional downloads
AIM-1320.pdf (2.032Mb)
Metadata
Show full item record
Abstract
This paper presents the theory behind a model for a two-stage analog network for edge detection and image reconstruction to be implemented in VLSI. Edges are detected in the first stage using the multi-scale veto rule, which eliminates candidates that do not pass a threshold test at each of a set of different spatial scales. The image is reconstructed in the second stage from the brightness values adjacent to edge locations. The MSV rule allows good localization and efficient noise removal. Since the reconstructed images are visually similar to the originals, the possibility exists of achieving significant bandwidth compression.
Date issued
1992-03-01
URI
http://hdl.handle.net/1721.1/5981
Other identifiers
AIM-1320
Series/Report no.
AIM-1320
Keywords
edge detection, image reconstruction, analog VLSI, bandwidthscompression

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.