MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Indexing for Visual Recognition from a Large Model Base

Author(s)
Breuel, Thomas M.
Thumbnail
DownloadAIM-1108.ps (4.716Mb)
Additional downloads
AIM-1108.pdf (1.870Mb)
Metadata
Show full item record
Abstract
This paper describes a new approach to the model base indexing stage of visual object recognition. Fast model base indexing of 3D objects is achieved by accessing a database of encoded 2D views of the objects using a fast 2D matching algorithm. The algorithm is specifically intended as a plausible solution for the problem of indexing into very large model bases that general purpose vision systems and robots will have to deal with in the future. Other properties that make the indexing algorithm attractive are that it can take advantage of most geometric and non-geometric properties of features without modification, and that it addresses the incremental model acquisition problem for 3D objects.
Date issued
1990-08-01
URI
http://hdl.handle.net/1721.1/6029
Other identifiers
AIM-1108
Series/Report no.
AIM-1108
Keywords
indexing, visual recognition, 3D, object recognition, scomputational complexity

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.