MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Heat Transfer Laboratory
  • Heat Transfer Laboratory Technical Reports
  • View Item
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Heat Transfer Laboratory
  • Heat Transfer Laboratory Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Film condensation of liquid metals -- precision of measurement

Author(s)
Wilcox, Stanley James; Rohsenow, Warren M.
Thumbnail
DownloadHTL_TR_1969_062.pdf (6.017Mb)
Other Contributors
Massachusetts Institute of Technology. Division of Sponsored Research.
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Massachusetts Institute of Technology. Heat Transfer Laboratory.
Metadata
Show full item record
Abstract
Major differences exist in results published by investigators of film condensation of liquid metal vapors. In particular, the reported dependence of the condensation coefficient on pressure has raised questions about both the precision of the reported data and the validity of the basic interphase mass transfer analysis. An error analysis presented in this investigation indicates that the reported pressure dependence of the condensation coefficient at higher pressures is due to an inherent limitation in the precision of the condensing wall temperature measurement. The magnitude of this limitation in precision is different for the various test systems used. The analysis shows, however, that the primary variable affecting the precision of the wall temperature measurement is the thermal conductivity of the condensing block. To verify the analysis, potassium was condensed on a vertical surface of a copper condensing block. The copper block was protected from the potassium with nickel plating. Condensation coefficients near unity were obtained out to higher pressures than those previously reported for potassium condensed with stainless steel or nickel condensing blocks. These experimental results agree with the prediction of the error analysis. In addition, a discussion of the precautions used to eliminate the undesirable effects of both non-condensable gas and improper thermocouple technique is included. It is concluded from the experimental data and the error analysis that the condensation coefficient is equal to unity and that the pressure dependence reported by others is due to experimental error.
Date issued
1969
URI
http://hdl.handle.net/1721.1/61430
Publisher
Cambridge, Mass. : M.I.T. Engineering Projects Laboratory, Dept. of Mechanical Engineering, [1969]
Other identifiers
14083416
Series/Report no.
Technical report (Massachusetts Institute of Technology, Heat Transfer Laboratory) ; no. 62.
Keywords
Liquid metals., Condensation., Potassium.

Collections
  • Heat Transfer Laboratory Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.