Show simple item record

dc.contributor.advisorNicholas C. Makris.en_US
dc.contributor.authorTavakoli Nia, Hadien_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2011-03-24T20:27:30Z
dc.date.available2011-03-24T20:27:30Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61924
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 69-70).en_US
dc.description.abstractSound-hole, an essential component of stringed musical instruments, enhances the sound radiation in the lower octave by introducing a natural vibration mode called air resonance. Many musical instruments, including those from the violin, lute and oud families have evolved complex sound-hole geometries through centuries of trail and error. However, due to the inability of current theories to analyze complex sound-holes, the design knowledge in such sound-holes accumulated by time is still uncovered. Here we present the potential physical principles behind the historical development of complex sound-holes such as rosettes in lute, f-hole in violin and multiple sound-holes in oud families based on a newly developed unified approach to analyze general sound-holes. We showed that the majority of the air flow passes through the near-the-edge area of the opening, which has potentially led to the emergence of rosettes in lute family. Consequently, we showed that the variation in resonance frequency and bandwidth of different traditional rosettes with fixed outer diameter is less than a semitone, while the methods based on the total void area predicts variations of many semitones. Investigating the evolution of sound-holes in violin family from circular geometry in at least 10th century to the present-day f-hole geometry, we found that the evolution is consistent with a drive toward decreasing the void area and increasing the resonance bandwidth for a fixed resonance frequency. We anticipate this approach to be a starting point in discovering the concepts behind the geometrical design of the existing sound-hole geometries, and helping the musicians, instrument makers and scientists utilize this knowledge to design consistently better instruments.en_US
dc.description.statementofresponsibilityby Hadi Tavakoli Nia.en_US
dc.format.extent70 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleAcoustic function of sound hole design in musical instrumentsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc707340180en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record