MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tangible programming bricks : an approach to making programming accessible to everyone

Author(s)
McNerney, Timothy S
Thumbnail
DownloadFull printable version (11.35Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciences.
Advisor
Fred Martin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Thanks to inexpensive microprocessors, consumer electronics are getting more powerful. They offer us greater control over our environment, but in a sense they are getting too powerful for their own good. A programmable thermostat can make my home more comfortable and save energy, but only if I successfully program it to match my life-style. Graphical, direct manipulation user interfaces are step in the direction of making devices easier to program, but it is still easier to manipulate physical objects in the real world than it is to interact with virtual objects "inside" a computer display. Tangible, or graspable user interfaces help bridge the gap between the virtual world and the physical world by allowing us to manipulate digital information directly with our hands. Tangible Programming Bricks are physical building blocks for constructing simple programs. In this thesis I provide technical details of the Bricks themselves, demonstrate that they are useful for controlling a variety of digital "everyday objects," from toy cars to kitchen appliances, and set the stage for future research that will more rigorously support my hypothesis that tangible programming is easier to understand, remember, explain to others, and perform in social settings, when compared to traditional programming mechanisms.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, February 2000.
 
Includes bibliographical references (leaves 65-68).
 
Date issued
2000
URI
http://hdl.handle.net/1721.1/62094
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program In Media Arts and Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.