MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Survivability in layered networks

Author(s)
Lee, Kayi (Edmund Kayi), 1977-
Thumbnail
DownloadFull printable version (16.29Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Eytan Modiano.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In layered networks, a single failure at the lower (physical) layer may cause multiple failures at the upper (logical) layer. As a result, traditional schemes that protect against single failures may not be effective in layered networks. This thesis studies the problem of maximizing network survivability in the layered setting, with a focus on optimizing the embedding of the logical network onto the physical network. In the first part of the thesis, we start with an investigation of the fundamental properties of layered networks, and show that basic network connectivity structures, such as cuts, paths and spanning trees, exhibit fundamentally different characteristics from their single-layer counterparts. This leads to our development of a new crosslayer survivability metric that properly quantifies the resilience of the layered network against physical failures. Using this new metric, we design algorithms to embed the logical network onto the physical network based on multi-commodity flows, to maximize the cross-layer survivability. In the second part of the thesis, we extend our model to a random failure setting and study the cross-layer reliability of the networks, defined to be the probability that the upper layer network stays connected under the random failure events. We generalize the classical polynomial expression for network reliability to the layered setting. Using Monte-Carlo techniques, we develop efficient algorithms to compute an approximate polynomial expression for reliability, as a function of the link failure probability. The construction of the polynomial eliminates the need to resample when the cross-layer reliability under different link failure probabilities is assessed. Furthermore, the polynomial expression provides important insight into the connection between the link failure probability, the cross-layer reliability and the structure of a layered network. We show that in general the optimal embedding depends on the link failure probability, and characterize the properties of embeddings that maximize the reliability under different failure probability regimes. Based on these results, we propose new iterative approaches to improve the reliability of the layered networks. We demonstrate via extensive simulations that these new approaches result in embeddings with significantly higher reliability than existing algorithms.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 195-204).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/63074
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.