Show simple item record

dc.contributor.advisorEytan Modiano.en_US
dc.contributor.authorLee, Kayi (Edmund Kayi), 1977-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-05-23T18:13:27Z
dc.date.available2011-05-23T18:13:27Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/63074
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 195-204).en_US
dc.description.abstractIn layered networks, a single failure at the lower (physical) layer may cause multiple failures at the upper (logical) layer. As a result, traditional schemes that protect against single failures may not be effective in layered networks. This thesis studies the problem of maximizing network survivability in the layered setting, with a focus on optimizing the embedding of the logical network onto the physical network. In the first part of the thesis, we start with an investigation of the fundamental properties of layered networks, and show that basic network connectivity structures, such as cuts, paths and spanning trees, exhibit fundamentally different characteristics from their single-layer counterparts. This leads to our development of a new crosslayer survivability metric that properly quantifies the resilience of the layered network against physical failures. Using this new metric, we design algorithms to embed the logical network onto the physical network based on multi-commodity flows, to maximize the cross-layer survivability. In the second part of the thesis, we extend our model to a random failure setting and study the cross-layer reliability of the networks, defined to be the probability that the upper layer network stays connected under the random failure events. We generalize the classical polynomial expression for network reliability to the layered setting. Using Monte-Carlo techniques, we develop efficient algorithms to compute an approximate polynomial expression for reliability, as a function of the link failure probability. The construction of the polynomial eliminates the need to resample when the cross-layer reliability under different link failure probabilities is assessed. Furthermore, the polynomial expression provides important insight into the connection between the link failure probability, the cross-layer reliability and the structure of a layered network. We show that in general the optimal embedding depends on the link failure probability, and characterize the properties of embeddings that maximize the reliability under different failure probability regimes. Based on these results, we propose new iterative approaches to improve the reliability of the layered networks. We demonstrate via extensive simulations that these new approaches result in embeddings with significantly higher reliability than existing algorithms.en_US
dc.description.statementofresponsibilityby Kayi Lee.en_US
dc.format.extent204 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSurvivability in layered networksen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc725897378en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record