MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effects of feature geometry on simulating nanoimprint lithography

Author(s)
GoGwilt, Cai P. (Cai Peter)
Thumbnail
DownloadFull printable version (5.789Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Duane S. Boning.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Nanoimprint lithography (NIL) is a method for fabricating nano-scale patterns by pressing stamps into viscous materials. A key barrier to industry adoption of NIL is the inability to predict whether a stamp will imprint successfully and how long the process should be run for. In this thesis, we help quantify the accuracy loss for an existing simulation package, simprint, which supports geometric abstractions and can simulate at the die level. To do this, we develop and study several comparison metrics. Our temporal submetric quantifies the error between two simulations at each timestep, while our spatial submetric quantifies the error at each spatial location. We subsequently use these metrics to study pattern abstraction by looking at how different types of patterns lead to different errors. This would allow us to suggest pattern abstractions that could improve the accuracy of a simulation. However, none of the features we study correlate with error. We conclude by exploring other possible uses of our metrics.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 67-68).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66419
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.