MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A real-time computer vision library for heterogeneous processing environments

Author(s)
Liu, Tony J
Thumbnail
DownloadFull printable version (3.720Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Christopher J. Terman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
With a variety of processing technologies available today, using a combination of different technologies often provides the best performance for a particular task. However, unifying multiple processors with different instruction sets can be a very ad hoc and difficult process. The Open Component Portability Infrastructure (OpenCPI) provides a platform that simplifies programming heterogeneous processing applications requiring a mix of processing technologies. These include central processing units (CPU), graphics processing units (GPU), field-programmable gate arrays (FPGA), general-purpose processors (GPP), digital signal processors (DSP), and high-speed switch fabrics. This thesis presents the design and implementation of a computer vision library in the OpenCPI framework, largely based on Open Source Computer Vision (OpenCV), a widely used library of optimized software components for real-time computer vision. The OpenCPI-OpenCV library consists of a collection of resource-constrained C language (RCC) workers, along with applications demonstrating how these workers can be combined to achieve the same functionality as various OpenCV library functions. Compared with applications relying solely on OpenCV, analogous OpenCPI applications can be constructed from many workers, often resulting in greater parallelization if run on multi-core platforms. Future OpenCPI computer vision applications will be able to utilize these existing RCC workers, and a subset of these workers can potentially be replaced with alternative implementations, e.g. on GPUs or FPGAs.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 69-70).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66439
Department
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.