Show simple item record

dc.contributor.advisorChristopher J. Terman.en_US
dc.contributor.authorLiu, Tony Jen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-10-17T21:26:09Z
dc.date.available2011-10-17T21:26:09Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66439
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 69-70).en_US
dc.description.abstractWith a variety of processing technologies available today, using a combination of different technologies often provides the best performance for a particular task. However, unifying multiple processors with different instruction sets can be a very ad hoc and difficult process. The Open Component Portability Infrastructure (OpenCPI) provides a platform that simplifies programming heterogeneous processing applications requiring a mix of processing technologies. These include central processing units (CPU), graphics processing units (GPU), field-programmable gate arrays (FPGA), general-purpose processors (GPP), digital signal processors (DSP), and high-speed switch fabrics. This thesis presents the design and implementation of a computer vision library in the OpenCPI framework, largely based on Open Source Computer Vision (OpenCV), a widely used library of optimized software components for real-time computer vision. The OpenCPI-OpenCV library consists of a collection of resource-constrained C language (RCC) workers, along with applications demonstrating how these workers can be combined to achieve the same functionality as various OpenCV library functions. Compared with applications relying solely on OpenCV, analogous OpenCPI applications can be constructed from many workers, often resulting in greater parallelization if run on multi-core platforms. Future OpenCPI computer vision applications will be able to utilize these existing RCC workers, and a subset of these workers can potentially be replaced with alternative implementations, e.g. on GPUs or FPGAs.en_US
dc.description.statementofresponsibilityby Tony J. Liu.en_US
dc.format.extent70 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleA real-time computer vision library for heterogeneous processing environmentsen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc755631660en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record