Show simple item record

dc.contributor.authorCohn, David A.en_US
dc.date.accessioned2004-10-08T20:36:19Z
dc.date.available2004-10-08T20:36:19Z
dc.date.issued1995-09-01en_US
dc.identifier.otherAIM-1552en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/6647
dc.description.abstractI describe an exploration criterion that attempts to minimize the error of a learner by minimizing its estimated squared bias. I describe experiments with locally-weighted regression on two simple kinematics problems, and observe that this "bias-only" approach outperforms the more common "variance-only" exploration approach, even in the presence of noise.en_US
dc.format.extent285295 bytes
dc.format.extent363027 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1552en_US
dc.titleMinimizing Statistical Bias with Queriesen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record