MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Sloan School of Management
  • Sloan Working Papers
  • View Item
  • DSpace@MIT Home
  • Sloan School of Management
  • Sloan Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Generality Based Algorithm Variants for Automatic Taxonomy Generation

Author(s)
Henschel, Andreas; Woon, Wei Lee; Wachter, Thomas; Madnick, Stuart
Thumbnail
DownloadSSRN-id1478201.pdf (706.9Kb)
Metadata
Show full item record
Abstract
We compare a family of algorithms for the automatic generation of taxonomies by adapting the Heymannalgorithm in various ways. The core algorithm determines the generality of terms and iteratively inserts them in a growing taxonomy. Variants of the algorithm are created by altering the way and the frequency, generality of terms is calculated. We analyse the performance and the complexity of the variants combined with a systematic threshold evaluation on a set of seven manually created benchmark sets. As a result, betweenness centrality calculated on unweighted similarity graphs often performs best but requires threshold fine-tuning and is computationally more expensive than closeness centrality. Finally, we show how an entropy-based filter can lead to more precise taxonomies.
Date issued
2009-09
URI
http://hdl.handle.net/1721.1/66564
Publisher
Cambridge, MA; Alfred P. Sloan School of Management, Massachusetts Institute of Technology
Series/Report no.
MIT Sloan School of Management Working Paper;4758-09CISL Working Paper;2009-12

Collections
  • Sloan Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.