MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mitigation of wind induced movement of buildings using the modified friction device

Author(s)
Mikou, Saad
Thumbnail
DownloadFull printable version (7.812Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Jerome J.Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Building higher skyscrapers increases the concern of wind induced motion. Indeed, in order to ensure serviceability and safety standards, it is the engineers' responsibility to investigate the response of high-rise buildings to wind excitation. Tuned mass dampers are usually used to limit the response of the buildings to wind. However, these devices are generally tuned for a particular bandwidth of frequencies. Therefore, in order to improve the effectiveness of these devices, control schemes must be implemented. For this thesis, the design of a modified friction device (MFD) has been studied. Requiring only a small amount of energy, the MFD is a new kind of semi-active damper that provides stability, accurate control and effectiveness. Using a MATLAB program, it was possible to model a primary structure hit by a certain wind excitation. The modified friction device was designed to counterbalance the effects of wind and decrease displacements and accelerations. It was placed on the top of the building where the displacements are generally the highest. The parameters of the MFD were examined, and many simulations were run in order to optimize the action of the device on the mitigation of wind excitation. The results demonstrate that the MFD effectively mitigates wind induced motion in buildings. Therefore, this thesis corroborates the benefits of implementing modified friction devices in civil structures.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 64-65).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66843
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.