Show simple item record

dc.contributor.advisorJerome J.Connor.en_US
dc.contributor.authorMikou, Saaden_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.en_US
dc.date.accessioned2011-11-01T19:51:37Z
dc.date.available2011-11-01T19:51:37Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/66843
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 64-65).en_US
dc.description.abstractBuilding higher skyscrapers increases the concern of wind induced motion. Indeed, in order to ensure serviceability and safety standards, it is the engineers' responsibility to investigate the response of high-rise buildings to wind excitation. Tuned mass dampers are usually used to limit the response of the buildings to wind. However, these devices are generally tuned for a particular bandwidth of frequencies. Therefore, in order to improve the effectiveness of these devices, control schemes must be implemented. For this thesis, the design of a modified friction device (MFD) has been studied. Requiring only a small amount of energy, the MFD is a new kind of semi-active damper that provides stability, accurate control and effectiveness. Using a MATLAB program, it was possible to model a primary structure hit by a certain wind excitation. The modified friction device was designed to counterbalance the effects of wind and decrease displacements and accelerations. It was placed on the top of the building where the displacements are generally the highest. The parameters of the MFD were examined, and many simulations were run in order to optimize the action of the device on the mitigation of wind excitation. The results demonstrate that the MFD effectively mitigates wind induced motion in buildings. Therefore, this thesis corroborates the benefits of implementing modified friction devices in civil structures.en_US
dc.description.statementofresponsibilityby Saad Mikou.en_US
dc.format.extent65 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleMitigation of wind induced movement of buildings using the modified friction deviceen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc757932293en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record