MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomalous transport in complex networks

Author(s)
Nicolaides, Christos
Thumbnail
DownloadFull printable version (5.367Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Ruben Juanes and Luis Cueto-Felgueroso.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The emergence of scaling in transport through interconnected systems is a consequence of the topological structure of the network and the physical mechanisms underlying the transport dynamics. We study transport by advection and diffusion in scale-free and Erdős-Rényi networks. Using stochastic particle simulations, we find anomalous (nonlinear) scaling of the mean square displacement with time. We show the connection with existing descriptions of anomalous transport in disordered systems, and explain the mean transport behavior from the coupled nature of particle jump lengths and transition times. Moreover, we study epidemic spreading through the air transportation network with a particle-tracking model that accounts for the spatial distribution of airports, detailed air traffic and realistic (correlated) waitingtime distributions of individual agents. We use empirical data from US air travel to constrain the model parameters and validate the model's predictions of traffic patterns. We formulate a theory that identifies the most influential spreaders from the point of view of early-time spreading behavior. We find that network topology, geography, aggregate traffic and individual mobility patterns are all essential for accurate predictions of spreading.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 43-45).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/66871
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.