MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Seiberg-Witten equations on manifolds with boundary

Author(s)
Nguyen, Timothy (Timothy Chieu)
Thumbnail
DownloadFull printable version (16.64Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Tomasu Mrowka and Katrin Wehrheim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we undertake an in-depth study of the Seiberg-Witten equations on manifolds with boundary. We divide our study into three parts. In Part One, we study the Seiberg-Witten equations on a compact 3-manifold with boundary. Here, we study the solution space of these equations without imposing any boundary conditions. We show that the boundary values of this solution space yield an infinite dimensional Lagrangian in the symplectic configuration space on the boundary. One of the main difficulties in this setup is that the three-dimensional Seiberg-Witten equations, being a dimensional reduction of an elliptic system, fail to be elliptic, and so there are resulting technical difficulties intertwining gauge-fixing, elliptic boundary value problems, and symplectic functional analysis. In Part Two, we study the Seiberg-Witten equations on a 3-manifold with cylindrical ends. Here, Morse-Bott techniques adapted to the infinite-dimensional setting allow us to understand topologically the space of solutions to the Seiberg-Witten equations on a semiinfinite cylinder in terms of the finite dimensional moduli space of vortices at the limiting end. By combining this work with the work of Part One, we make progress in understanding how cobordisms between Riemann surfaces may provide Lagrangian correspondences between their respective vortex moduli spaces. Moreover, we apply our results to provide analytic groundwork for Donaldson's TQFT approach to the Seiberg-Witten invariants of closed 3-manifolds. Finally, in Part Three, we study analytic aspects of the Seiberg-Witten equations on a cylindrical 4-manifold supplied with Lagrangian boundary conditions of the type coming from the first part of this thesis. The resulting system of equations constitute a nonlinear infinite-dimensional nonlocal boundary value problem and is highly nontrivial. We prove fundamental elliptic regularity and compactness type results for the corresponding equations, so that these results may therefore serve as foundational analysis for constructing a monopole Floer theory on 3-manifolds with boundary.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 249-252).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/67811
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.