Show simple item record

dc.contributor.advisorTomasu Mrowka and Katrin Wehrheim.en_US
dc.contributor.authorNguyen, Timothy (Timothy Chieu)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mathematics.en_US
dc.date.accessioned2011-12-19T19:00:39Z
dc.date.available2011-12-19T19:00:39Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/67811
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 249-252).en_US
dc.description.abstractIn this thesis, we undertake an in-depth study of the Seiberg-Witten equations on manifolds with boundary. We divide our study into three parts. In Part One, we study the Seiberg-Witten equations on a compact 3-manifold with boundary. Here, we study the solution space of these equations without imposing any boundary conditions. We show that the boundary values of this solution space yield an infinite dimensional Lagrangian in the symplectic configuration space on the boundary. One of the main difficulties in this setup is that the three-dimensional Seiberg-Witten equations, being a dimensional reduction of an elliptic system, fail to be elliptic, and so there are resulting technical difficulties intertwining gauge-fixing, elliptic boundary value problems, and symplectic functional analysis. In Part Two, we study the Seiberg-Witten equations on a 3-manifold with cylindrical ends. Here, Morse-Bott techniques adapted to the infinite-dimensional setting allow us to understand topologically the space of solutions to the Seiberg-Witten equations on a semiinfinite cylinder in terms of the finite dimensional moduli space of vortices at the limiting end. By combining this work with the work of Part One, we make progress in understanding how cobordisms between Riemann surfaces may provide Lagrangian correspondences between their respective vortex moduli spaces. Moreover, we apply our results to provide analytic groundwork for Donaldson's TQFT approach to the Seiberg-Witten invariants of closed 3-manifolds. Finally, in Part Three, we study analytic aspects of the Seiberg-Witten equations on a cylindrical 4-manifold supplied with Lagrangian boundary conditions of the type coming from the first part of this thesis. The resulting system of equations constitute a nonlinear infinite-dimensional nonlocal boundary value problem and is highly nontrivial. We prove fundamental elliptic regularity and compactness type results for the corresponding equations, so that these results may therefore serve as foundational analysis for constructing a monopole Floer theory on 3-manifolds with boundary.en_US
dc.description.statementofresponsibilityby Timothy Nguyen.en_US
dc.format.extent252 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleThe Seiberg-Witten equations on manifolds with boundaryen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc767907908en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record