MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Technical Reports (1964 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesizing Regularity Exposing Attributes in Large Protein Databases

Author(s)
de la Maza, Michael
Thumbnail
DownloadAITR-1444.ps.Z (199.6Kb)
Additional downloads
AITR-1444.pdf (775.8Kb)
Metadata
Show full item record
Abstract
This thesis describes a system that synthesizes regularity exposing attributes from large protein databases. After processing primary and secondary structure data, this system discovers an amino acid representation that captures what are thought to be the three most important amino acid characteristics (size, charge, and hydrophobicity) for tertiary structure prediction. A neural network trained using this 16 bit representation achieves a performance accuracy on the secondary structure prediction problem that is comparable to the one achieved by a neural network trained using the standard 24 bit amino acid representation. In addition, the thesis describes bounds on secondary structure prediction accuracy, derived using an optimal learning algorithm and the probably approximately correct (PAC) model.
Date issued
1993-05-01
URI
http://hdl.handle.net/1721.1/6789
Other identifiers
AITR-1444
Series/Report no.
AITR-1444
Keywords
representation reformulation, secondary structuresprediction, genetic algorithms, neural networks, clustering algorithm, sdecision tree systems

Collections
  • AI Technical Reports (1964 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.