Show simple item record

dc.contributor.advisorSamir A. Nayfeh and Alexandre Megretski.en_US
dc.contributor.authorZuo, Lei, 1974-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-01-12T19:22:36Z
dc.date.available2012-01-12T19:22:36Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68378
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.en_US
dc.descriptionPage 214 blank.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractStructured control (static output feedback, reduced-order control, and decentralized feedback) is one of the most important open problems in control theory and practice. In this thesis, various techniques for synthesis of structured controllers are surveyed and investigated, including H2 optimization, H[infinity] optimization, L1 control, eigenvalue and eigenstructure treatment, and multiobjective control. Unstructured control-full- state feedback and full-order control-is also discussed. Riccati-based synthesis, linear matrix inequalities (LMI), homotopy methods, gradient- and subgradientbased optimization are used. Some new algorithms and extensions are proposed, such as a subgradient-based method to maximize the minimal damping with structured feedback, a multiplier method for structured optimal H2 control with pole regional placement, and the LMI-based H2/H[infinity]/pole suboptimal synthesis with static output feedback. Recent advances in related areas are comprehensively surveyed and future research directions are suggested. In this thesis we cast the parameter optimization of passive mechanical systems as a decentralized control problem in state space, so that we can apply various decentralized control techniques to the parameter design which might be very hard traditionally. More practical constraints for mechanical system design are considered; for example, the parameters are restricted to be nonnegative, symmetric, or within some physically-achievable ranges. Marginally statable systems and hysterically damped systems are also discussed. Numerical examples and experimental results are given to illustrate the successful application of decentralized control techniques to the design of passive mechanical systems, such as multi-degree-of-freedom tuned-mass dampers, passive vehicle suspensions, and others.en_US
dc.description.statementofresponsibilityby Lei Zuo.en_US
dc.format.extent214 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleOptimal control with structure constraints and its application to the design of passive mechanical systemsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc50474114en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record