Show simple item record

dc.contributor.advisorFranz X. Kärtner.en_US
dc.contributor.authorPeng, Michael Yungen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-01-12T19:33:13Z
dc.date.available2012-01-12T19:33:13Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68507
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 84-86).en_US
dc.description.abstractThe performance of electronic analog-to-digital converters (ADCs) at high sampling rates is fundamentally limited by the timing jitter of electronic clocks. To circumvent this limitation, one method is to exploit the orders-of-magnitude lower timing jitter of mode-locked lasers and implement optical sampling as a front-end for electronic ADCs. The optical-sampling, wavelength-demultiplexing approach to A/D conversion, which is explored in this thesis, offers key benefits such as ease of scalability to higher aggregate sampling rates via passive wavelength-division demultiplexing (WDM) filters and potential for full integration via silicon photonics platform for chip-scale signal processing applications. This thesis will first cover the design issues for each stage in the optically-sampled, wavelength-demultiplexed photonic ADC architecture, followed by experimental results from two system demonstrations. Digitization of a 41-GHz signal with 7.0 effective bits at a sampling rate of 2 GSa/s was demonstrated with a discrete-component photonic ADC, which corresponds to 15 fs of jitter, a 4-5 times improvement over state-of-the-art electronic ADCs. On the way towards an integrated photonic ADC, a silicon chip with core photonic components was fabricated and used to digitize a 10-GHz signal with 3.5 effective bits. Drop-port transmission measurements of an integrated 20-channel WDM filter bank are included to show potential for high sampling rate operation with 10 effective bits.en_US
dc.description.statementofresponsibilityby Michael Yung Peng.en_US
dc.format.extent86 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSystem demonstration of an optically-sampled, wavelength-demultiplexed photonic analog-to-digital converteren_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc770688278en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record