Show simple item record

dc.contributor.advisorVladimir Stojanović.en_US
dc.contributor.authorUyar, Oğuzhanen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-01-12T19:33:26Z
dc.date.available2012-01-12T19:33:26Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68510
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 79-80).en_US
dc.description.abstractAs the resolution of electrical ADCs gets limited at higher sampling rates due to sampling clock jitter, low-jitter mode-lock laser based photonic ADCs are starting to gain more attention. As well as low-jitter and high-linearity operation at very high speeds, photonic ADCs provide the opportunity to de-multiplex electrical signals to enable the parallel sampling of signals which increases the total sampling speed dramatically. However, even in photonic systems, a careful optimization between the degree of de-multiplexing, the optical non-linearities and receiver front-end noise has to be performed to enable resolution and sampling rate gains to materialize. Electrical components still constitute the bottleneck for a photonic ADC system. Photo-detector front-end, which is responsible for the current-voltage transformation of the samples, is one of the most critical components for the overall linearity, noise and jitter performance of photonic ADC systems. This work focuses on photo-detector front-ends and investigates the performance of several structures as well as evaluating the performance of photonic ADC systems depending on the amount of photo-detector current. Integrator and trans-impedance amplifier flavors of the front-end circuits are designed, implemented, simulated and laid out for 6 ENOB and 10 ENOB linearity and noise performance at 1GS/s. The circuits are implemented on 45 nm SOI process and integrated with on-chip photonic components which allow on-chip and off-chip ADC implementations.en_US
dc.description.statementofresponsibilityby Oğuzhan Uyar.en_US
dc.format.extent80 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFront-end circuits for a photonic analog-to-digital converteren_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc770692212en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record