MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Propeller design and analysis for a small, autonomous UAV

Author(s)
Tracy, Ian Patrick
Thumbnail
DownloadFull printable version (8.078Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Robert John Hansman, Jr.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
An experimental study was performed to design and analyze a "pusher" propeller for use by a small, expendable, autonomous unmanned aerial vehicle (UAV) whose mission was to descend from 30,000 feet to sea level at an approximately constant descent rate over a 3-hour mission duration. The entire propeller design process, from airfoil selection to final part generation in the computer-aided drafting program SolidWorks is described. QMIL and QPROP were the programs of choice for producing a propeller design focused on yielding minimum induced losses for optimal aerodynamic efficiency given a conservative aerodynamic design point. The TA22 airfoil defined the propeller cross section and NEU-012-030-4000 DC brushless motor was selected to power the propeller. The initial propeller design was modified to comply with size constraints set by the mission. Wind tunnel tests were conducted to determine the effect of fuselage blanketing on propeller performance. Of particular interest was comparing the power required to propel the aircraft at a given airspeed for a configuration in which the propeller was mounted behind the fuselage, and one in which the propeller was not obstructed by an upstream object and instead isolated in the incoming airstream. It was empirically found that fuselage blanketing had a significantly detrimental impact on each of the 4 propellers used in testing. It was therefore recommended that the hub section of the propeller be redesigned to mitigate drag and propulsive losses resulting from reduced momentum in the blanketed region of the propeller. This recommendation was applied to the included propeller design and propeller betas in the hub region were reduced using qualitative methods.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68926
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.