Show simple item record

dc.contributor.advisorRobert John Hansman, Jr.en_US
dc.contributor.authorTracy, Ian Patricken_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2012-01-30T17:03:39Z
dc.date.available2012-01-30T17:03:39Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68926
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractAn experimental study was performed to design and analyze a "pusher" propeller for use by a small, expendable, autonomous unmanned aerial vehicle (UAV) whose mission was to descend from 30,000 feet to sea level at an approximately constant descent rate over a 3-hour mission duration. The entire propeller design process, from airfoil selection to final part generation in the computer-aided drafting program SolidWorks is described. QMIL and QPROP were the programs of choice for producing a propeller design focused on yielding minimum induced losses for optimal aerodynamic efficiency given a conservative aerodynamic design point. The TA22 airfoil defined the propeller cross section and NEU-012-030-4000 DC brushless motor was selected to power the propeller. The initial propeller design was modified to comply with size constraints set by the mission. Wind tunnel tests were conducted to determine the effect of fuselage blanketing on propeller performance. Of particular interest was comparing the power required to propel the aircraft at a given airspeed for a configuration in which the propeller was mounted behind the fuselage, and one in which the propeller was not obstructed by an upstream object and instead isolated in the incoming airstream. It was empirically found that fuselage blanketing had a significantly detrimental impact on each of the 4 propellers used in testing. It was therefore recommended that the hub section of the propeller be redesigned to mitigate drag and propulsive losses resulting from reduced momentum in the blanketed region of the propeller. This recommendation was applied to the included propeller design and propeller betas in the hub region were reduced using qualitative methods.en_US
dc.description.statementofresponsibilityby Ian P. Tracy.en_US
dc.format.extent47 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titlePropeller design and analysis for a small, autonomous UAVen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc773711768en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record