Advanced Search

Alignment by Maximization of Mutual Information

Research and Teaching Output of the MIT Community

Show simple item record Viola, Paul A. en_US 2004-10-20T20:27:57Z 2004-10-20T20:27:57Z 1995-03-01 en_US
dc.identifier.other AITR-1548 en_US
dc.description.abstract A new information-theoretic approach is presented for finding the pose of an object in an image. The technique does not require information about the surface properties of the object, besides its shape, and is robust with respect to variations of illumination. In our derivation, few assumptions are made about the nature of the imaging process. As a result the algorithms are quite general and can foreseeably be used in a wide variety of imaging situations. Experiments are presented that demonstrate the approach registering magnetic resonance (MR) images with computed tomography (CT) images, aligning a complex 3D object model to real scenes including clutter and occlusion, tracking a human head in a video sequence and aligning a view-based 2D object model to real images. The method is based on a formulation of the mutual information between the model and the image called EMMA. As applied here the technique is intensity-based, rather than feature-based. It works well in domains where edge or gradient-magnitude based methods have difficulty, yet it is more robust than traditional correlation. Additionally, it has an efficient implementation that is based on stochastic approximation. Finally, we will describe a number of additional real-world applications that can be solved efficiently and reliably using EMMA. EMMA can be used in machine learning to find maximally informative projections of high-dimensional data. EMMA can also be used to detect and correct corruption in magnetic resonance images (MRI). en_US
dc.format.extent 13809554 bytes
dc.format.extent 6023178 bytes
dc.format.mimetype application/postscript
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.relation.ispartofseries AITR-1548 en_US
dc.title Alignment by Maximization of Mutual Information en_US

Files in this item

Name Size Format Description 13.16Mb Postscript
AITR-1548.pdf 5.744Mb PDF

This item appears in the following Collection(s)

Show simple item record