MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT OpenCourseWare (MIT OCW) - Archived Content
  • MIT OCW Archived Courses
  • MIT OCW Archived Courses
  • View Item
  • DSpace@MIT Home
  • MIT OpenCourseWare (MIT OCW) - Archived Content
  • MIT OCW Archived Courses
  • MIT OCW Archived Courses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

18.03 Differential Equations, Spring 2006

Author(s)
Miller, Haynes; Mattuck, Arthur
Thumbnail
Download18-03-spring-2006/contents/index.htm (17.77Kb)
Alternative title
Differential Equations
Terms of use
Usage Restrictions: This site (c) Massachusetts Institute of Technology 2012. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license") unless otherwise noted. The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions.
Metadata
Show full item record
Abstract
Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and eigenvectors; and Non-linear autonomous systems: critical point analysis and phase plane diagrams.
Date issued
2006-06
URI
http://hdl.handle.net/1721.1/70961
Department
Massachusetts Institute of Technology. Department of Mathematics
Other identifiers
18.03-Spring2006
local: 18.03
local: IMSCP-MD5-ac47dc8c6f52190dcbcf3983c01a04cf
Keywords
Ordinary Differential Equations, ODE, modeling physical systems, first-order ODE's, Linear ODE's, second order ODE's, second order ODE's with constant coefficients, Undetermined coefficients, variation of parameters, Sinusoidal signals, exponential signals, oscillations, damping, resonance, Complex numbers and exponentials, Fourier series, periodic solutions, Delta functions, convolution, Laplace transform methods Matrix systems, first order linear systems, eigenvalues and eigenvectors, Non-linear autonomous systems, critical point analysis, phase plane diagrams

Collections
  • MIT OCW Archived Courses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.