Show simple item record

dc.contributor.advisorSteven Dubowsky.en_US
dc.contributor.authorReed, Elizabeth Anne, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2012-11-19T19:20:16Z
dc.date.available2012-11-19T19:20:16Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74940
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 84-86).en_US
dc.description.abstractThe purpose of this thesis is to design and validate a controllable energy recovery device with application to photovoltaic powered reverse osmosis (PVRO). The energy consumption of a reverse osmosis plant depends significantly on the efficiency of its energy recovery process. This work presents a concept for a controllable energy recovery process, so that a system can operate optimally based on the incoming water and power characteristics. The design presented here uses a variable nozzle and a Pelton wheel to recover energy from the high pressure concentrated brine exiting the reverse osmosis membrane. The components are designed, analytically modeled using fundamental engineering principles, and experimentally tested. The experimental data is then used to check the validity of the formulated concept models. This research encompasses the modeling and testing of a variable nozzle using a needle valve to control the flow through the nozzle, and also of a Pelton bucket, to examine the effectiveness of the momentum transfer from a high velocity jet to the Pelton wheel. This research is done to examine the feasibility of this concept for potential implementation on a full scale PVRO system. The component validation is performed to prove that the concept is effective and competitive with other options.en_US
dc.description.statementofresponsibilityby Elizabeth Anne Reed.en_US
dc.format.extent96 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleThe design of a controllable energy recovery device for solar powered reverse osmosis desalination with experimental validationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.identifier.oclc815964196en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record