MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets

Author(s)
Martin, Jean Mario Nations
Thumbnail
DownloadFull printable version (8.079Mb)
Alternative title
Fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Warren Seering.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. Publicly shared transportation systems provide electric vehicles with further synergies by allowing for less energy consumption per capita and decreased car congestion. Unfortunately, existing charging platforms are not designed for proper adoption in a public setting and tend to be vulnerable to potential safety hazards and vandalism. Our product, smartCharge, addresses the need for electric charging in a Mobility-on-Demand transportation system. The connector interface design proposed allows for a modular approach for charging various publicly shared electric vehicles, while using a current-controlled locking mechanism with up to 250 pounds of force. Additionally, the connector is linked to the charging post through a stainless steel retractable arm, which is composed of a spring-loaded pulley mechanism. This paper discusses the design and manufacturing processes for the charging connector and retractable arm, while elaborating on the overall functionality of smartCharge. Finally, the implementation strategy and key considerations for deploying this technology are briefly discussed.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 54-55).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/75665
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.