MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EMG control of prosthetic ankle plantar flexion

Author(s)
Wang, Jing, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.834Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biological Engineering.
Advisor
Hugh Herr and Ed Boyden.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Similar to biological human ankle, today's commercially available powered ankle-foot prostheses can vary impedance and deliver net positive ankle work. These commercially available prostheses are intrinsically controlled. Users cannot intuitively change ankle controller's behavior to perform movements that are not part of the repetitive walking gait cycle. For example, when transition from level ground walking to descending stairs, user cannot intuitively initiate or control the amount of ankle angle deflexion for a more normative stair descent gait pattern. This paper presents a hybrid controller that adds myoelectric control functionality to an existing intrinsic controller. The system employs input from both mechanical sensors on the ankle as well as myoelectric signals from gastrocnemius muscle of the user. This control scheme lets the user to modulate the gain of command ankle torque upon push off during level ground walking and stair ascent. It also allows the user to interrupt level ground walking control cycle and initiate ankle plantar flexion during stair descent. As a preliminary study, ankle characteristics such as ankle angle and torque were measured and compared to biological ankle characteristics. Results show that the proposed hybrid controller can maintain existing controller's biomimetic characteristics. In addition, it can also recognize to a qualitative extent the intended command torque for ankle push off and user's desire to switch between control modalities for different terrains. The study shows that it is possible and desirable to use neural signals as control signals for prosthetic leg controllers. Keyword: Myoelectric control, powered prosthesis, proportional torque control
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 59-60).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/76110
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.