MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Construction of prototype system for directional solvent extraction desalination

Author(s)
Fowler, Michael James
Thumbnail
DownloadFull printable version (2.458Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Gang Chen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Directional solvent extraction has been demonstrated as a low temperature, membrane free desalination process. This method dissolves the water into an inexpensive, benign directional solvent, rejects the contaminants, then recovers pure water, and re-uses the solvent. In order to bring this technology closer to real world application, a continuous process prototype for a directional solvent extraction system was developed and tested. Octanoic acid was used as the solvent of choice, and a system capable of producing up to 7 gallons per day of fresh water was constructed. The system was tested to effectively desalinate the feed water, and the total system power was less than 7 kW. The system was constructed and first tested to run fresh water and solvent through it. Fresh water was dissolved in and separated, as expected, from the solvent at a rate of about 2 gpd. Saline water containing 3.5% sodium chloride was then used as feedwater and the desalinated water was recovered at a rate of about 1 gpd with an average salinity of 0.175%. Effective continuous operation of the directional solvent extraction prototype was demonstrated. Certain design improvements to increase efficiency, optimize component sizes, and decrease energy consumption are suggested. The demonstrated system has a wide range of applications, including production of fresh water from the sea, as well as, treatment of produced and flowback water from shale gas and oil extraction.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 37-38).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76130
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.