MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contact-printed microelectromechanical systems

Author(s)
Murarka, Apoorva
Thumbnail
DownloadFull printable version (12.42Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Vladimir Bulović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Microelectromechanical systems (MEMS) are ubiquitous. Scalable large-area arrays of MEMS on a variety of substrates, including flexible substrates, have many potential applications. Novel methods for additive fabrication of thin (125±15 nm thick) suspended gold membranes on a variety of rigid and flexible cavity-patterned substrates for MEMS applications are reported. The deflection of these membranes, suspended over cavities in a dielectric layer atop a conducting electrode, can be used to produce sounds or monitor pressure. The reported fabrication methods employ contact-printing, and avoid fabrication of MEMS diaphragms via wet or deep reactive-ion etching, which in turn removes the need for etch-stops and wafer bonding. Elevated temperature processing is also avoided to enable MEMS fabrication on flexible polymeric substrates. Thin films up to 12.5 mm2 in area are fabricated. The MEMS devices are electrically actuated and the resulting membrane deflection is characterized using optical interferometry. Preliminary sound production is demonstrated, and further applications of this technology are discussed.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 105-107).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/77080
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.