MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Shuttling of ions for characterization of a microfabricated ion trap

Author(s)
Fisher, Zachary (Zachary Kenneth)
Thumbnail
DownloadFull printable version (8.226Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Isaac L. Chuang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I present experimental results demonstrating the characterization of a planar Paul trap. I discuss the theory of ion trapping and analyze the voltages required for shuttling. Next, the characteristics of a digital-to-analog converter (DAC) are calibrated, and this instrument is integrated into trapping experiments to test the viability of the analytic model. Combining theory with the capabilities of the DAC, I calculate that the new experimental system is capable of 3 nm-precision control of the ion. Taking advantage of this ion control, I present initial results for a lock-in micromotion detection method which minimizes stray fields around an ⁸⁸Sr+ ion using Fourier analysis on the ion fluorescence to detect resonance at the secular frequencies. This method drives the ion oscillator across resonance using a superimposed radiofrequency electric field, which allows for off-axis field measurements as well as trap characterization. With this method, the secular frequencies of the trap are measured and are observed to fall within 3.50[sigma] of the analytic prediction.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 65-67).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78510
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.