MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the design of single electron transistors for the measurement of spins in phosphorus doped silicon

Author(s)
Randeria, Mallika
Thumbnail
DownloadFull printable version (8.037Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Amir Yacoby and Pablo Jarillo-Herrero.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Phosphorus doped silicon is a prime candidate for spin based qubits. We plan to investigate a novel hybrid technique that combines the advantages of spin selective optical excitations with that of electrical readout measurements to detect spin defects in semiconductors. In this thesis, I present my work on the design and fabrication of single electron transistors (SETs) for the electrical readout of the spin state of phosphorus doped silicon. For such highly sensitive measurements, it is necessary for the characteristic energy of the SET to be larger than thermal fluctuations. My goal was to design and fabricate SETs on P doped Si that function at temperatures of about 2K. This necessitated minimizing the tunnel junction area through optimized lithography and evaporation procedures. I have produced SETs with charging energies of - 0.85 meV corresponding to a temperature of ~ 10 K. These SETs have a charge sensitivity of ~ 2 x 10 -⁴ e/[square root]Hz at 10 mK but have yet to be tested at temperatures of 2K. The mechanism of detection involves exciting the P donor to a P+ ion that then shifts the electrochemical potential near the SET, creating a sharp peak in the current through the SET. This can ultimately be used for single shot readout and thus for a measurement of the spin state of the electron - a promising system for quantum computation, magnetometry and spintronics.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 66-67).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/78520
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.