MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of Local field effect in organic film using pressure technique

Author(s)
Chang, Wendi
Thumbnail
DownloadFull printable version (8.318Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vladimir Bulović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis proposes and demonstrates a pressure probing technique for studying the effects of local dielectric changes on the excitonic energy levels in amorphous organic thin films for optoelectronic device applications. Compression of organic films causes a decrease in intermolecular spacing and, through solvation effects, lowers the exciton transition energy. A series of steady-state photoluminescence (PL) measurements performed on doped organic thin films demonstrated the applicability of pressure probing in measuring solvation effects, and fitted to solvation theory. Since a pressure probing technique eliminates composition differences and sample-to-sample variability, in comparison with doping methods, it may be a simpler method of observing energy shifts in solvation effects. Further investigation into spectral diffusion for films under compression indicates a change in spectral diffusion rate due to change in molecular packing density. Comparisons were made between spectral diffusion rates for films under pressure and films of different doping concentrations. Initial measurements of pressure effects on exciplex charge-transfer states in bulk heterojunction films are performed to show change in emission lifetimes. This work could provide a better understanding of the singlet-triplet exciton coupling rates and have a significant impact on device optimization for organic light-emitting diodes (OLEDs) and solar cell applications.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 63-65).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82374
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.