MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast transactions for multicore in-memory databases

Author(s)
Tu, Stephen Lyle
Thumbnail
DownloadFull printable version (3.430Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Samuel R. Madden.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Though modern multicore machines have sufficient RAM and processors to manage very large in-memory databases, it is not clear what the best strategy for dividing work among cores is. Should each core handle a data partition, avoiding the overhead of concurrency control for most transactions (at the cost of increasing it for cross-partition transactions)? Or should cores access a shared data structure instead? We investigate this question in the context of a fast in-memory database. We describe a new transactionally consistent database storage engine called MAFLINGO. Its cache-centered data structure design provides excellent base key-value store performance, to which we add a new, cache-friendly serializable protocol and support for running large, read-only transactions on a recent snapshot. On a key-value workload, the resulting system introduces negligible performance overhead as compared to a version of our system with transactional support stripped out, while achieving linear scalability versus the number of cores. It also exhibits linear scalability on TPC-C, a popular transactional benchmark. In addition, we show that a partitioning-based approach ceases to be beneficial if the database cannot be partitioned such that only a small fraction of transactions access multiple partitions, making our shared-everything approach more relevant. Finally, based on a survey of results from the literature, we argue that our implementation substantially outperforms previous main-memory databases on TPC-C benchmarks.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 55-57).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82375
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.